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Metformin targets multiple signaling 
pathways in cancer
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Abstract 

Metformin, an inexpensive and well-tolerated oral agent commonly used in the first-line treatment of type 2 dia‑
betes, has become the focus of intense research as a candidate anticancer agent. Here, we discuss the potential of 
metformin in cancer therapeutics, particularly its functions in multiple signaling pathways, including AMP-activated 
protein kinase, mammalian target of rapamycin, insulin-like growth factor, c-Jun N-terminal kinase/mitogen-activated 
protein kinase (p38 MAPK), human epidermal growth factor receptor-2, and nuclear factor kappaB pathways. In addi‑
tion, cutting-edge targeting of cancer stem cells by metformin is summarized.
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Background
Metformin (1,1-dimethylbiguanide hydrochloride), a 
USA Food and Drug Administration (FDA)-approved 
biguanide derivative and the most widely prescribed anti-
hyperglycemic drug, is used as first-line therapy for dia-
betes mellitus type 2. Metformin reduces blood glucose 
levels by inhibiting hepatic glucose production, increas-
ing glucose uptake and utilization by the skeletal muscle, 
reducing insulin resistance in peripheral tissue, and sup-
pressing gluconeogenesis in the liver [1–4]. Interestingly, 
metformin attracted increasing interests in recent years 
due to its anticancer effects [5–10]. The drug has been 
demonstrated to reduce the development of prostate 
cancer [11], lung cancer [12], breast cancer [13], esopha-
geal cancer [14], colon cancer [15], and melanoma [16]. 
Several preclinical studies have reported that metformin 
reduced cell proliferation, induced apoptosis, and caused 
cell cycle arrest in vitro and also reduced occurrence and 
growth of experimental tumors in  vivo [17–19]. Met-
formin can also be used as a sensitizer or be combined 
with conventional chemotherapeutic agents and radio-
therapy to combat cancer [20–24]. Moreover, metformin 

plays an important role in targeting cancer stem cells 
(CSCs) [25] and reversing the epithelial-mesenchymal 
transition (EMT), a critical process in cancer metastasis 
[26]. The possible signaling pathways involved in the anti-
cancer effects of metformin are outlined below and dem-
onstrated in Fig. 1 and Table 1.

Activation of adenosine monophosphate‑activated protein 
kinase (AMPK)
AMPK‑dependent effects of metformin
Activation of adenosine monophosphate-activated pro-
tein kinase, an intracellular energy sensor, is activated 
by elevating the ratio of adenosine monophosphate 
(AMP)/adenosine triphosphate (ATP). Once activated, 
AMPK restores cellular energy levels by inhibiting ana-
bolic processes and promoting catabolic processes, e.g., 
glycolysis and fatty acid oxidation, to increase the AMP/
ATP ratio [27, 28]. Vazquez-Martin et  al. [29] reported 
that activation of AMPK inhibited cell mitosis and prolif-
eration by directly influencing the dynamics of cell divi-
sion during mitosis. Metformin has also been reported 
to exert its antineoplastic effects by stimulating AMPK 
[30–32] through up-regulation of the p53–p21 axis and 
down-regulation of cyclin D1 levels. Metformin inhibits 
the corresponding cyclin-dependent kinases and then 
induces G1-phase arrest of the cell cycle [33]. Moreo-
ver, Kisfalvi et  al. [34] reported that metformin caused 
sustained and significant increases in AMPK activity 
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through Thr172 phosphorylation and that the specific 
AMPK inhibitor compound C attenuated the effect of 
metformin on DNA synthesis, revealing an AMPK-
dependent pathway for metformin treatment of pan-
creatic cancer. However, Klubo-Gwiezdzinska et  al. [35] 
observed different results that AMPKα knockdown by 
small interfering RNA (siRNA) and compound C did not 
prevent the growth-inhibitory effects of metformin on 
medullary thyroid cancer cells. Shi et  al. [36] observed 
that both molecular and pharmacologic knockdown of 
AMPK counteracted the metformin-induced growth 
inhibition and G0/G1 cell cycle arrest of lymphoma cells. 
Shi et  al. [36] reported that AMPKα siRNA caused not 

only a striking attenuation of the lymphoma cell response 
to metformin but also a further growth inhibition when 
it was combined with doxorubicin. Moreover, in acute 
lymphoblastic leukemia (ALL), knockdown of AMPKα 
by short hairpin RNA (shRNA) rescued cells from met-
formin-induced apoptosis, which was associated with 
restoration of the unfolded protein response (UPR)/
glucose-regulated protein 78  kDa (GRP78) function, 
down-regulation of UPR apoptotic markers inositol-
requiring enzyme 1α (IRE1α) and C/EBP homologous 
protein (CHOP), and interruption of protein synthe-
sis. Studies on breast cancer therapy have demonstrated 
that inhibition of AMPK with siRNA decreased the 

Fig. 1  Signaling pathways through which metformin acts in cancer. IGF-1 insulin-like growth factor-1, MAPK mitogen-activated protein kinase, 
REDD1 regulated in development and DNA damage 1, AMPK adenosine monophosphate-activated protein kinase, mTOR mammalian target of 
rapamycin, NF-κB nuclear factor kappaB, MDR1 multidrug resistance 1, HER2 human epidermal growth factor receptor-2, IGF-1R IGF-1 receptor, IR 
insulin receptor
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Table 1  Metformin targets multiple signaling pathways in cancer

Proposed mechanism Functions Tumor type/model References

AMPK-dependent Inhibition of cell mitosis and proliferation Human carcinoma tissues and human 
cancer cell lines

[29]

Up-regulation of the p53–p21 axis and 
down-regulation of cyclin D1

T-cell acute lymphoblastic leukemia [30–32]

DNA synthesis Pancreatic cancer [34]

Growth inhibition and G0/G1 cell cycle arrest Lymphoma cells [36]

Cell apoptosis Acute lymphoblastic leukemia [36]

Suppression of multidrug resistance 1 gene 
activation

Breast cancer [37]

AMPK-independent REDD1, a negative regulator of mTOR, 
mediates cell cycle arrest and cyclin D1 
decrease

Prostate cancer cells [39]

Induced apoptosis Human ovarian cancer cells [40]

Suppression of mTOR Inhibition of global protein synthesis and 
cell proliferation

Breast cancer [54–56]

Repression of oncogenic mRNA translation Leukemia [30, 32]

Lung cancer [59, 60]

Inhibition of cell growth and induction of 
apoptosis

Breast cancer [61, 62]

Prevents the development of carcinogen-
induced premalignant lesions

Oral squamous cell carcinoma [63]

Induction of autophagy Lymphoma [36]

Inhibits growth and decreases resistance to 
anoikis

Thyroid cancer [35, 64]

Inhibits skin tumor promotion In overweight and obese mice with papil‑
loma and squamous cell carcinoma

[65]

Suppresses HER2 oncoprotein overexpres‑
sion

Breast cancer [101]

Suppression of IGF signaling Prevents androgen-mediated IGF-1R 
up-regulation; reduces cell proliferation, 
invasion, and clonogenic capacity

Prostate cancer cells [82]

Reduces the circulating levels of insulin and 
IGF-1; blocks cell growth and proliferation

A tobacco carcinogen-induced lung cancer 
model in A/J mice

[60]

AMPK-induced phosphorylation of insulin 
receptor substrate-1

Switches off IGF-1-induced activation of 
Akt/Tsc1/mTOR

Human pancreatic cancer cells, breast 
cancer cells

[83–85]

Activation of AMPK Disruption of crosstalk between insulin/IGF-
1R and GPCR signaling

Pancreatic cancer [86]

Activation of the JNK/p38 MAPK pathway Apoptosis-mediated effect Lung cancer cells [100]

The MAPK signaling pathway Synergistic effects of metformin in combina‑
tion with gefitinib

Lung cancer [59, 91]

Blocks tumor cells migration and invasion 
and inhibits MMP-9 activation

Human fibrosarcoma [92]

Inhibits cell growth and colony formation 
and induces cell cycle arrest

Breast cancer [93–96]

Blocks survival signals Prostate cancer [97]

Endometrial cancer [98]

Inhibition of the NF-κB pathway Halts proliferation of cancer cells and causes 
death; sensitizes to chemotherapeutic 
reagents

Inflammation-associated tumors [107]

Repression of the NF-κB and mTOR signaling 
pathways

Growth inhibition Cutaneous squamous cell carcinoma [99]

Inhibition of CSCs Inhibits cellular transformation and selec‑
tively kills cancer stem cells

Preclinical breast cancer models [119]

Down-regulation of CSC markers Inhibits cell proliferation, migration, and 
invasion

Pancreatic cancer [121, 122]
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suppression of multidrug resistance 1 (MDR1) gene acti-
vation after exposure to metformin [37]. Furthermore, 
overexpression of a dominant-negative mutant of AMPK 
attenuated the inhibitory effects of metformin on the 
phosphorylation of cAMP-responsive element-binding 
protein (CREB) and the expression of MDR1 [37]. Taken 
together, the antidiabetic drug metformin exhibits anti-
cancer effects that are associated with activation of the 
AMPK signaling pathway.

AMPK‑independent effects of metformin
In contrast to the above findings, Sahra et  al. [38] 
reported that the anti-proliferation effect of metformin 
was independent of the AMPK pathway. They used 
AMPK siRNA to inhibit the two catalytic subunits of 
AMPK, but AMPK inhibition did not block the G0/G1 
cell cycle arrest induced by metformin. Their subsequent 
study showed that a negative regulator of mammalian tar-
get of rapamycin (mTOR), regulated in development and 
DNA damage 1 (REDD1), mediated the effects of met-
formin on the cell cycle arrest and cyclin D1 alteration 
[39]. Similarly, Yasmeen et al. [40] found that metformin-
induced apoptosis of human ovarian cancer cells was 
independent of AMPK. In addition, AMPK deficiency 
sensitized cancer cells to the growth-inhibitory effects 
of metformin [41]. Arai et  al. [42] demonstrated that 
metformin-mediated repression of chronic inflammatory 
responses was associated with inhibition of tumor necro-
sis factor alpha (TNFα) production in human monocytes, 
an event that was most likely independent of AMPK acti-
vation. Chronic inflammation may provide a basis for 
cancer progression, but there was no obvious change in 
phosphor-AMPKα observed after metformin treatment 
[43]. Collectively, these studies provide compelling evi-
dence that certain antitumor effects of metformin are 
independent of the AMPK signaling pathway [38–43].

Inhibition of the mTOR pathway
mTOR plays a critical role in regulating cellular energy 
homeostasis by modulating cellular processes such 
as protein synthesis and autophagy [44–47]. mTOR 
signaling exerts significant positive regulation of cell 

proliferation and tumorigenesis in diverse cancers, and 
it is frequently aberrantly activated in cancers. Activa-
tion of mTOR is associated with malignant tumor pro-
gression, resistance to chemotherapy and molecularly 
targeted therapies, and dismal prognosis [48–52]. mTOR 
is involved in the formation of two functionally and bio-
chemically discrete signaling complexes: rapamycin with 
either nutrient-sensitive mTOR1 or nutrient-insensitive 
mTOR2 [53]. Components upstream of mTOR1 include 
tuberous sclerosis complex 1 (TSC1) and 2 (TSC2) [54, 
55]. The combination of TSC1 and TSC2 functions as a 
tumor inhibitory complex that suppresses mTOR activ-
ity. Such mTOR signaling suppression reduces the phos-
phorylation of major downstream substrates, such as the 
eukaryotic initiation factor 4E-binding protein 1 (4E-
BP1), ribosomal protein S6 kinase (S6K), and initiation 
factor eIF4G, and net inhibition of global protein synthe-
sis and proliferation in a large number of cancers [56–58].

Metformin-induced inhibition of the mTOR path-
way has been demonstrated in different types of cancer, 
such as leukemia [30, 32, 59, 60], lung cancer [61, 62], 
breast cancer [63, 64], oral squamous cell carcinoma 
[65], lymphoma [36], and thyroid cancer [35, 66] in 
human, as well as in both papilloma and squamous cell 
carcinoma in mice [67]. Metformin induces the liver 
kinase B1 (LKB1)-mediated activation of AMPK, which 
in turn blocks mTOR signaling and protein synthesis 
in many cancer cell lines [58, 68, 69]. AMPK impacts 
mTOR through phosphorylation and activation of the 
tumor suppressor TSC2, which results in inhibition of a 
downstream small GTPase (RHEB), negatively regulat-
ing mTOR activity [70, 71]. In contrast, metformin can 
also inhibit mTOR in an AMPK-independent pathway 
by reducing the levels of insulin-like growth factor-1 
(IGF-1) [72, 73]. Kalender et  al. [74] have shown that 
the inhibitory effects of metformin on mTOR signaling 
were mediated by Rag GTPases in the absence of AMPK 
and TSC1/2. Of note, one study indicated that met-
formin directly influenced mTOR in a p53-dependent 
manner through an AMPK-independent mechanism to 
boost the level of REDD1, a negative regulator of mTOR 
[39]. In that report, REDD1 inactivation, using siRNA 

Table 1  continued

Proposed mechanism Functions Tumor type/model References

Targeting CSCs and mTOR Inhibits esophageal cancer cell growth and 
sensitizes cells to 5-FU cytotoxic effects

Esophageal cancer cells [123]

Selective suppression of NF-κB nuclear 
localization and STAT3 activity

Inhibits nuclear translocation of NF-κB and 
phosphorylation of STAT3 in CSCs

Breast cancer, prostate cancer, and mela‑
noma cell lines

[126]

AMPK adenosine monophosphate-activated protein kinase, REDD1 regulated in development and DNA damage 1, mTOR mammalian target of rapamycin, HER2 
human epidermal growth factor receptor-2, IGF insulin-like growth factor, GPCR G protein-coupled receptor, IGF-1 insulin-like growth factor-1, JNK c-Jun N-terminal 
kinase, MAPK mitogen-activated protein kinase, MMP-9 matrix metallopeptidase-9, NF-κB nuclear factor kappaB, CSCs cancer stem cells, 5-FU 5-fluorouracil, STAT3 
signal transducer and activator of transcription 3
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or REDD1−/− cells, abrogated cell cycle arrest indepen-
dently of AMPK.

Suppression of the IGF signaling pathway
Insulin and IGFs are key regulators of metabolism and 
growth. A rapidly growing body of researches has revealed 
that insulin and IGFs are associated with cancer progres-
sion by activating signaling pathways that are associated 
with cell growth and proliferation [75]. There are two 
subtypes of IGF, IGF-1 and IGF-2, which are both mito-
genic and antiapoptotic. IGF-1 receptor (IGF-1R) binds to 
the ligand IGF-1, IGF-2, or insulin to promote autophos-
phorylation of tyrosine at its kinase domain. This trig-
gers tyrosine and serine phosphorylation to form binding 
sites for insulin receptor substrates (IRSs) and Src and 
concomitant activation of signaling through the phos-
phatidylinositol-3-kinase (PI3K)/Akt/mTOR and RAS/
RAF/mitogen-activated protein kinase (MAPK) pathways 
[76–78]. Moreover, overexpression of IGF-1R can induce 
tumor formation and metastasis [79, 80]. Likewise, in 
endometrial cancer cells, overexpression of IGF-1R trig-
gers endometrial hyperplasia and contributes to type I epi-
thelial cell growth by activating PI3K/Akt/mTOR signaling 
[3, 81, 82]. In addition, activation of IGF accelerated YYH1 
tumor progression by promoting vascular smooth muscle 
cell proliferation, migration, and angiogenesis [83].

Emerging evidence suggests that metformin can exert 
its anticancer functions by reducing the levels of IGF-1. 
Metformin, which acts as an insulin-sensitizing agent, 
decreases IGF-1 by indirectly down-regulating insulin 
and insulin-binding proteins to reverse hyperinsuline-
mia, which may be a mechanism for metformin’s anti-
cancer effects [75]. In fact, Memmott et al. [62] observed 
that metformin acted by reducing the circulating levels of 
insulin and IGF-1 to block tumor growth and prolifera-
tion in a tobacco carcinogen-induced lung cancer model 
in A/J mice. Similarly, Malaguarnera et  al. [84] recently 
confirmed that metformin reduced cell proliferation, inva-
sion, and clonogenic capacity by preventing the andro-
gen-mediated up-regulation of IGF-1R. Moreover, recent 
studies have shown that metformin-mediated activation 
of AMPK increased the phosphorylation of IRS-1, dimin-
ishing the IGF-1-induced activation of Akt/TSC1/mTOR 
[85–87]. Another mechanism relevant to IGF-1 could be 
disruption of the crosstalk between insulin receptor/IGF-
1R and G protein-coupled receptor (GPCR) signaling via 
metformin-induced activation of AMPK [86, 88].

Inhibition of other signaling pathways
Metformin and the JNK/p38 MAPK pathway
Other possible mechanisms for the beneficial effects 
of metformin on cancer development have also been 
described. The MAPK-involved pathways are significant 

intracellular signaling pathways that regulate cell growth, 
differentiation, proliferation, apoptosis, and migra-
tion [89–92]. Four major MAPK pathways have been 
described: extracellular signal-regulated kinase (ERK, 
also known as p42/44 MAPK), big MAP kinase (BMK, 
also known as ERK5), p38 MAPK (also known as SAPK2/
RK), and c-jun N-terminal kinase (JNK, also known as 
stress-activated protein kinase 1 [SAPK1]) pathways. 
Although not universally observed in all cells, metformin 
has been found to be relevant to MAPK signaling in cer-
tain malignancies such as lung cancer [61, 93], human 
fibrosarcoma [94], breast cancer [95–98], prostate can-
cer [99], endometrial cancer [100], and cutaneous squa-
mous cell carcinoma [101]. Metformin has been shown 
to exert an apoptosis-mediated effect through activating 
the JNK/p38 MAPK pathway and enhancing expression 
of growth inhibition and DNA damage-inducible gene 
153 (GADD153) [102]. Monteagudo et  al. [99] used a 
dendrimer-vehiculized siRNA to block the MAPK signal-
ing pathway and found that the blockade enhanced the 
anticancer effect of metformin. Other data from Tseng 
et al. [93] suggested that metformin could reduce pacli-
taxel-induced, p38 MAPK-mediated expression of exci-
sion repair cross complementary 1.

Metformin and the HER2 pathway
Human epidermal growth factor receptor-2 (HER2) 
belongs to the epidermal growth factor receptor fam-
ily, the members of which possess tyrosine kinase activ-
ity. HER2 is overexpressed in approximately 20%–30% of 
breast cancers. As a significant biomarker of breast can-
cer, HER2 is a crucial therapeutic target in breast cancers 
that overexpress HER2. Vazquez-Martin et al. [103] stud-
ied the effects of metformin on cultured human breast 
cancer cells with HER2 amplification and observed that 
ectopic overexpression of the HER2 oncogene signifi-
cantly enhanced metformin-induced growth inhibition. 
They also reported that metformin suppressed HER2 
oncoprotein overexpression via AMPK-independent 
inhibition of mTOR in human breast cancer cells [103]. 
Interestingly, metformin notably blocked HER2 tyrosine 
kinase activity at low therapeutic concentrations [96]. 
In addition, it was found that metformin combination 
therapy with the anti-HER2 monoclonal antibody trastu-
zumab could eliminate stem/progenitor cell populations 
in HER2-amplified breast carcinoma cells [104].

Metformin and the NF‑κB pathway
Nuclear factor kappaB (NF-κB) is a protein complex 
that functions as a signal-induced transcription fac-
tor to regulate proliferation and apoptosis [105]. It is an 
important potential target in cancer therapy [106–108]. 
Inhibition of NF-κB can induce cancer cells to halt 
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proliferation and die or can sensitize cells to chemo-
therapeutic reagents [109]. Kim et al. [37] reported that 
metformin activated AMPK and inhibited mTOR by sup-
pressing NF-κB and CREB. Later, Chaudhary et al. [101] 
observed that the growth-inhibitory effect of metformin 
repressed the NF-κB and mTOR signaling pathways. 
Additionally, Zheng et  al. [110] showed that metformin 
dampened NF-κB signaling by boosting NF-κB inhibi-
tor alpha (IκBa) in hepatocellular carcinoma cell lines. 
Moreover, forced expression of p65 or overexpression of 
an undegradable mutant form of IκBa was found to acti-
vate NF-κB signaling, thereby attenuating the antitumor 
effects of metformin.

Metformin targets cancer stem cells
Cancer stem cells, also called tumor-initiating cells, are a 
subset of cancer cells that are believed to have indefinite 
potential capacity to self-renew and result in tumorigen-
esis [111]. Compared with non-cancer stem cells, CSCs 
are both chemoresistant [112–116] and radioresistant 
[116–119]. CSCs are compelling candidates for tumor 
origination and may contribute to cancer metastasis and 
relapse, which are the main impediments to prolonging 
overall survival. Of note, self-renewal and inherent chem-
oresistance are responsible for tumor recurrence [120]. 
Therefore, development of non-toxic treatment strategies 
targeting CSCs will be of significant therapeutic benefit.

Metformin inhibition of CSCs was first demonstrated in 
2009 in preclinical breast cancer models [121]. Subsequent 
reports indicated that metformin improved the response 
of human cancer xenografts to conventional chemotherapy 
by eradicating CSCs in multiple cancer types [104, 122]. In 
parallel, metformin down-regulates CSC marker genes in 
pancreatic cancer [123, 124], esophageal cancer [125], and 
breast cancer [126]. In pancreatic cancer, metformin inhib-
its cell proliferation, migration, and invasion by weakening 
CSC function mediated by deregulating miRNAs [123]. In 
esophageal cancer, metformin inhibits esophageal cancer cell 
growth and sensitizes cells to the cytotoxic effects of 5-fluo-
rouracil (5-FU) by targeting CSCs and mTOR [125]. Regard-
ing the mechanisms by which metformin targets CSCs, Song 
et al. [127] reported that metformin increased the sensitiv-
ity of cancer cells to radiotherapy and exhibited cytotoxicity 
toward CSCs, overcoming their radioresistance via activa-
tion of AMPK and suppression of mTOR. In contrast, Hirsch 
et  al. [128] reported that metformin selectively suppressed 
NF-κB nuclear localization and Stat3 activity in CSCs.

Conclusions
In conclusion, in vitro and in vivo studies strongly indi-
cate that metformin, a widely prescribed oral medica-
tion used as front-line therapy for type 2 diabetes, could 

be a valuable adjuvant therapy for cancer. Metformin 
may become a useful adjuvant drug in association with 
established anticancer therapies, and there are multi-
ple clinical trials examining the effects of metformin 
on cancer outcomes. In general, most data support the 
hypothesis that metformin is protective against cancer. 
However, based on the current preliminary findings, 
it appears that metformin is not an effective treatment 
alone for unselected patient populations or larger num-
ber of patients. Therefore, we recommend that combina-
tion therapies with metformin as well as potential novel 
biomarkers that could identify patient populations sensi-
tive to metformin treatment should be pursued. Further 
studies are needed to improve our understanding of the 
pathways linking high metformin efficacy and cancer 
development.

Overall, the biological effect of metformin on cancer 
cells is based on its ability to activate AMPK or inhibit 
downstream growth factor signaling through inhibi-
tion of mTOR. Metformin also has indirect effects on 
the IGF and JNK/p38 MAPK pathways; other possible 
mechanisms include inhibition of the HER2 and NF-κB 
signaling pathways. Further support for these obser-
vations is that metformin kills cancer stem cells and 
changes the properties of CSCs. Nonetheless, a large 
number of further translational studies are required to 
evaluate the potential of metformin as an additive anti-
tumoral agent.
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