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Dual prognostic role 
of 2-oxoglutarate-dependent oxygenases 
in ten cancer types: implications for cell cycle 
regulation and cell adhesion maintenance
Wai Hoong Chang, Donall Forde and Alvina G. Lai*

Abstract 

Background: Tumor hypoxia is associated with metastasis and resistance to chemotherapy and radiotherapy. Genes 
involved in oxygen-sensing are clinically relevant and have significant implications for prognosis. In this study, we 
examined the pan-cancer prognostic significance of oxygen-sensing genes from the 2-oxoglutarate-dependent 
oxygenase family.

Methods: A multi-cohort, retrospective study of transcriptional profiles of 20,752 samples of 25 types of cancer was 
performed to identify pan-cancer prognostic signatures of 2-oxoglutarate-dependent oxygenase gene family (a family of 
oxygen-dependent enzymes consisting of 61 genes). We defined minimal prognostic gene sets using three independ-
ent pancreatic cancer cohorts (n = 681). We identified two signatures, each consisting of 5 genes. The ability of the signa-
tures in predicting survival was tested using Cox regression and receiver operating characteristic (ROC) curve analyses.

Results: Signature 1 (KDM8, KDM6B, P4HTM, ALKBH4, ALKBH7) and signature 2 (KDM3A, P4HA1, ASPH, PLOD1, PLOD2) 
were associated with good and poor prognosis. Signature 1 was prognostic in 8 cohorts representing 6 cancer types 
(n = 2627): bladder urothelial carcinoma (P = 0.039), renal papillary cell carcinoma (P = 0.013), liver cancer (P = 0.033 
and P = 0.025), lung adenocarcinoma (P = 0.014), pancreatic adenocarcinoma (P < 0.001 and P = 0.040), and uterine 
corpus endometrial carcinoma (P < 0.001). Signature 2 was prognostic in 12 cohorts representing 9 cancer types 
(n = 4134): bladder urothelial carcinoma (P = 0.039), cervical squamous cell carcinoma and endocervical adenocar-
cinoma (P = 0.035), head and neck squamous cell carcinoma (P = 0.038), renal clear cell carcinoma (P = 0.012), renal 
papillary cell carcinoma (P = 0.002), liver cancer (P < 0.001, P < 0.001), lung adenocarcinoma (P = 0.011), pancreatic 
adenocarcinoma (P = 0.002, P = 0.018, P < 0.001), and gastric adenocarcinoma (P = 0.004). Multivariate Cox regression 
confirmed independent clinical relevance of the signatures in these cancers. ROC curve analyses confirmed superior 
performance of the signatures to current tumor staging benchmarks. KDM8 was a potential tumor suppressor down-
regulated in liver and pancreatic cancers and an independent prognostic factor. KDM8 expression was negatively 
correlated with that of cell cycle regulators. Low KDM8 expression in tumors was associated with loss of cell adhesion 
phenotype through HNF4A signaling.

Conclusion: Two pan-cancer prognostic signatures of oxygen-sensing genes were identified. These genes can be 
used for risk stratification in ten diverse cancer types to reveal aggressive tumor subtypes.
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Background
Solid tumors demand a considerable amount of oxygen 
due to their unique vasculature systems [1]. Rapid neo-
plastic cell proliferation and overexpression of angiogenic 
factors leading to the formation of disorganized blood 
vessels result in insufficient oxygen supply to tumor cells 
[2, 3]. Hence, there is a requirement for tumors to evolve 
systems that detect changes in oxygen homeostasis [4]. 
The discovery of hypoxia-inducible factor (HIF), a key 
oxygen-sensing gene, represents a quantum leap forward 
in tumor biology [5, 6]. Its discovery has led to the devel-
opment of drugs used to treat cancer [7, 8].

In addition to HIF, 2-oxoglutarate (2OG)-dependent 
oxygenases represent another family of oxygen-sens-
ing proteins. As suggested by the name, this group of 
enzymes has an absolute requirement for molecular oxy-
gen. They catalyze a range of oxidative modifications, and 
their activities are affected by nutrient and oxygen avail-
ability [9], both of which are altered within the tumor 
microenvironment. Several members from this gene fam-
ily have been implicated in cancer. For example, 10–11 
translocation 2 is frequently found to be mutated in leu-
kemia [10] and other solid malignancies [11]. In addition, 
the epigenetic alterations and inactivating mutations of 
the Jumonji-C domain-containing lysine demethylase 
(KDM) family are frequently observed in multiple can-
cers such as multiple myeloma, esophageal squamous cell 
carcinoma, renal cell carcinoma, breast cancer, colorectal 
cancer, and glioblastoma [12, 13].

We hypothesized that detecting the expression of 
2OG-dependent oxygenases could help predict progno-
sis in solid malignancies that are characteristically oxy-
gen-deprived. Additionally, we hypothesized this would 
be applicable to different types of cancer as they share a 
uniform need to overcome hypoxia for survival. Starting 
from an initial set of 61 genes encoding 2OG-dependent 
oxygenases, we developed two prognostic gene signa-
tures, each consisting of a minimal 5 genes that could 
facilitate risk stratification and predict overall survival 
(OS) in cancer patients, and further confirmed their 
prognostic performance through a multi-cohort pan-
cancer validation process.

Methods
Datasets and processing
Datasets used in this study consist of the expression pro-
files of 20,752 tumor samples and 881 non-tumor sam-
ples that were obtained from The Cancer Genome Atlas 
(TCGA) [14], International Cancer Genome Consortium 
(ICGC) [15], and Gene Expression Omnibus (GEO), rep-
resenting 25 cancer types. The cohort descriptions are 
listed in Additional file  1. TCGA datasets were down-
loaded from Broad Institute GDAC Firehose (https ://

gdac.broad insti tute.org/), which included gene expres-
sion profiles of 19,781 tumor samples and 881 non-tumor 
samples. ICGC datasets were downloaded from the 
ICGC data portal (https ://icgc.org/), which included 729 
tumor samples. A GEO dataset was downloaded from the 
GEO data portal (https ://www.ncbi.nlm.nih.gov/geo/), 
which included 242 tumor samples. TCGA transcrip-
tome datasets were represented as the normalized gene 
expression RSEM (RNA-seq by expectation maximiza-
tion) values [16] obtained from GDAC Firehose. ICGC 
transcriptome datasets were represented as normalized 
read counts. The GEO dataset was generated by Affym-
etrix microarray profiling using the Affymetrix Human 
Genome U133A 2.0 Array [17]. All expression profiles 
were converted to  log2(x + 1) scale.

KDM8 differential expression analysis
TCGA liver cancer cohort (LIHC; Additional file 1) was 
used in KDM8 differential expression analysis. A total of 
371 cancer patients in this cohort were median dichoto-
mized into low and high KDM8 expression groups. To 
determine differentially expressed genes between the 
two groups, the Bayes method and linear model were 
implemented using the R package limma (version 3.8) 
[18]. P values were adjusted using the false discovery rate 
controlling procedure of Benjamini–Hochberg. Genes 
with  log2 fold change of > 1 or < −  1 and adjusted P val-
ues < 0.05 were considered significant.

Gene signatures and risk scores
Expression scores for gene signatures 1 and 2 were 
calculated for each patient by taking the average  log2 
expression values of signature genes. Signature 1 genes: 
KDM8, KDM6B, P4HTM, ALKBH4, and ALKBH7. 
Signature 2 genes: KDM3A, P4HA1, ASPH, PLOD1, 
and PLOD2. Tumor hypoxia scores were calculated as 
the average  log2 expression values of 52 hypoxia sig-
nature genes [19]: ESRP1, CORO1C, SLC2A1, UTP11, 
CDKN3, TUBA1B, ENO1, NDRG1, PGAM1, CHCHD2, 
SLC25A32, SHCBP1, KIF20A, PGK1, BNIP3, ANLN, 
ACOT7, TUBB6, MAP7D1, YKT6, PSRC1, GPI, 
PGAM4, GAPDH, MRPL13, SEC61G, VEGFA, MIF, 
TPI1, MAD2L2, HK2, AK4, CA9, SLC16A1, KIF4A, 
PSMA7, LDHA, MRPS17, PNP, TUBA1C, HILPDA, 
LRRC42, TUBA1A, MRGBP, MRPL15, CTSV, ADM, 
DDIT4, PFKP, P4HA1, MCTS1, and ANKRD37. The risk 
score for each patient was calculated by taking the sum 
of Cox regression coefficient for each signature gene 
multiplied with its corresponding expression value. 
Nonparametric Spearman’s rank correlation analysis 
was employed to assess the relationship of expression 
scores and risk scores with tumor hypoxia (hypoxia 
score).

https://gdac.broadinstitute.org/
https://gdac.broadinstitute.org/
https://icgc.org/
https://www.ncbi.nlm.nih.gov/geo/
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Survival analyses
Cox proportional hazards regression analysis was 
employed to investigate the association between patient 
survival and risk factors, e.g., signature 1 or signature 2 
score, tumor stage, and other clinical variables. Univari-
ate analyses were performed to determine the influence 
of individual risk factors on OS. Multivariate analyses 
were performed by including risk factors that were iden-
tified in univariate analyses (P < 0.05). Hazard ratios 
(HR) were determined from Cox models. Cox regression 
analyses were performed using the R survival (version 
2.43-3) [20] and survminer (version 0.4.3) [21] pack-
ages. Proportional hazards assumption was supported 
by a non-significant relationship between scaled Schoe-
nfeld residuals and time using the R survival package. In 
addition, Kaplan–Meier and log-rank tests were used in 
univariate analyses of the gene signatures in relation to 
patient survival and were performed using the survival 
and survminer packages. Patients were median-dichoto-
mized into low and high-score groups based on median 
expression scores of signature genes. Differences between 
high and low-score groups were tested using the log-rank 
test implemented with the survival package.

Time-dependent receiver operating characteristic 
(ROC) curve analysis was used to assess the predictive 
performance of both signatures 1 and 2 in comparison 
with standard tumor staging parameters. The R surv-
comp (version 3.8) package [22] was employed to com-
pute time-dependent ROC curves [22].

Biological enrichment analysis
Analysis of biological pathway enrichment on the 745 
differentially expressed genes between KDM8-low and 
-high groups was conducted using GeneCodis against 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
(https ://www.genom e.jp/kegg/) and Gene Ontology 
(GO) databases (http://geneo ntolo gy.org/) [23]. The Enri-
chr tool was used to identify transcription factors from 
the ENCODE database (https ://www.encod eproj ect.org/) 
as potential regulators of these 745 genes [24, 25].

HNF4A loss‑of‑function analysis
A total of 148 genes were identified as HNF4A targets in 
the HepG2 hepatoma cell line determined using the Enri-
chr tool [24, 25]. Differential expression analysis between 
HNF4A wild-type and null mice livers (GSE3126) per-
formed using the GEO2R tool [26] identified 110 dif-
ferentially expressed genes from the initial 745-gene set 
identified previously (Fig.  5h). Of these 110 genes, 45 
were identified as direct HNF4A targets and were down-
regulated in the HNF4A-null mice (Fig. 5i).

Somatic mutation identification
Level 3 mutation datasets were downloaded from GDAC 
(https ://gdac.broad insti tute.org/). Kaplan–Meier analysis 
and log-rank tests were employed to determine the asso-
ciation of somatic mutations, in combination with signa-
ture 1 or 2, on OS.

All graphs were generated using the ggplot2 package in 
R (version 3.1.0) [27].

Statistical analysis
Comparisons of gene expression levels between tumor 
and non-tumor samples or between high- and low-
score groups were performed using the non-parametric 
Mann–Whitney–Wilcoxon test implemented in R (ver-
sion 3.3.3) [28].

Results
Multi‑cohort analyses revealed two prognostic 
2OG‑dependent oxygenases signatures
We analyzed the prognostic significance of 61 2OG-
dependent oxygenase genes (Additional file 2) in 19,781 
tumor samples from multiple TCGA cohorts [14] cover-
ing 25 cancer types (Additional file 1). Prognostic genes 
were defined as those whose expression levels were sig-
nificantly correlated with patients’ OS. Pancreatic cancer 
is difficult to treat. Since the highest number of prog-
nostic genes (29 genes) was observed in the pancre-
atic cancer cohort (PAAD; 178 samples), two additional 
pancreatic cancer cohorts from ICGC (PACA-AU and 
PACA-CA; 269 and 234 samples) were used in combina-
tion as training cohorts (Fig.  1a). We defined two gene 
signatures (signatures 1 and 2) as favorable and unfavora-
ble prognostic factors by taking into consideration genes 
that were significant in univariate Cox regression analy-
ses in 2 out of 3 pancreatic cancer cohorts (Fig.  1a, b). 
Signature 1 included KDM8, KDM6B, P4HTM, ALKBH4, 
and ALKBH7. Likewise, KDM3A, P4HA1, ASPH, PLOD1, 
and PLOD2 made up signature 2 (Fig. 1a).

Patients were median-dichotomized based on mean 
expression scores of signatures 1 and 2 genes. Cox regres-
sion analyses revealed that patients with high expres-
sion of signature 1 genes had significantly better OS in 
6 cancer types (Additional file 3): bladder urothelial car-
cinoma (BLCA: HR, 0.662; 95% confidence interval [CI] 
0.450–0.974; P = 0.036), renal papillary cell carcinoma 
(KIRP: HR, 0.370; 95% CI 0.157–0.871; P = 0.023), liver 
cancer (LIHC: HR, 0.656; 95% CI 0.424–0.915; P = 0.048 
and LIRI-JP: HR, 0.490; 95% CI 0.259–0.938; P = 0.031), 
lung adenocarcinoma (LUAD: HR, 0.625; 95% CI 0.443–
0.879; P = 0.007), pancreatic adenocarcinoma (PAAD: 
HR, 0.454; 95% CI 0.278–0.741; P = 0.002), and uterine 
corpus endometrial carcinoma (UCEC: HR, 0.401; 95% 

https://www.genome.jp/kegg/
http://geneontology.org/
https://www.encodeproject.org/
https://gdac.broadinstitute.org/
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CI 0.229–0.702; P = 0.002). Similar results were obtained 
using log-rank tests, consistent with the fact that signa-
ture 1 was a marker of good prognosis (Fig. 2a). In con-
trast, patients with high expression of signature 2 genes 
had significantly worse prognosis in 9 cancers: bladder 
urothelial carcinoma (BLCA: HR, 1.459; 95% CI 1.096–
2.137; P = 0.042), cervical squamous cell carcinoma and 
endocervical adenocarcinoma (CESC: HR, 1.972; 95% 
CI 1.003–3.877; P = 0.045), head and neck squamous 

cell carcinoma (HNSC: HR, 1.479; 95% CI 1.056–2.072; 
P = 0.023), renal clear cell carcinoma (KIRC: HR, 1.483; 
95% CI 1.096–2.007; P = 0.011), renal papillary cell carci-
noma (KIRP: HR, 3.862; 95% CI 1.565–9.526; P = 0.003), 
liver cancer (LIRI-JP: HR, 5.271; 95% CI 2.429–11.440; 
P < 0.001 and GSE14520: HR, 2.285; 95% CI 1.458–3.580; 
P < 0.001), lung adenocarcinoma (LUAD: HR, 1.562; 95% 
CI 1.116–2.188; P = 0.009), pancreatic adenocarcinoma 
(PAAD: HR, 1.969; 95% CI 1.217–3.186; P = 0.006), 

Cox regression analyses
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Fig. 1 Schematic diagram of the study design and development of signatures derived from 61 2-oxoglutarate-dependent oxygenase genes. a 
Three pancreatic adenocarcinoma cohorts were used to define both signatures 1 and 2. Genes found to be prognostic in univariate Cox regression 
analysis in 2 out of 3 pancreatic adenocarcinoma cohorts were included in signatures 1 and 2. Signature 1 is a marker of good prognosis and 
consists of 5 genes (KDM8, KDM6B, P4HTM, ALKBH4, and ALKBH7). Signature 2 is a marker of adverse prognosis and consists of 5 genes (KDM3A, 
P4HA1, ASPH, PLOD1, and PLOD2). Prognosis of both signatures was further confirmed in 10 cancer types using Kaplan–Meier, Cox regression, 
and receiver operating characteristic analyses. b Forest plots of prognostic genes found to be significant by univariate Cox regression analysis 
in pancreatic adenocarcinoma cohorts abbreviated as PAAD, PACA-AU, and PACA-CA. Genes were separated into two groups, good and bad 
prognostic genes. Hazard ratios were denoted as red circles, and turquoise bars represent 95% confidence interval. Significant Wald test P values 
are indicated in blue. Y-axes represent gene symbols followed by cohort abbreviations. Signature 1 genes are marked in green. Signature 2 genes 
are marked in red. Full description of cancers is listed in Additional file 1. 2OG, 2-oxoglutarate; TCGA, The Cancer Genome Atlas; ICGC, International 
Cancer Genome Consortium
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and gastric adenocarcinoma (STAD: HR, 1.725; 95% CI 
1.142–2.605; P = 0.009) (Fig. 2b and Additional file 3).

Cross‑platform subgroup and multivariate analyses 
confirmed the validity of signatures 1 and 2 
as independent prognostic factors
To assess the independence of signatures 1 and 2 over 
current tumor staging systems, we performed subgroup 
analyses of their prognostic effects in patients with early 
(stages I and/or II), intermediate (stages II and/or III), 
and late (stages III and/or VI) cancer stages. Kaplan–
Meier analyses revealed that signature 1 successfully 
identified high-risk (low-expression score) and low-risk 
(high-expression score) patients with early (bladder 
urothelial carcinoma, liver cancer, lung adenocarcinoma, 
pancreatic adenocarcinoma, and uterine corpus endome-
trial carcinoma), intermediate (liver cancer and uterine 
corpus endometrial carcinoma), and late (renal papillary 
cell carcinoma) disease stages (Fig.  3a and Additional 
file 4A). Signature 2 was also independent of disease stage 
as it successfully predicted survival in early (liver cancer, 
lung adenocarcinoma, and pancreatic adenocarcinoma), 
intermediate (bladder urothelial carcinoma, liver cancer, 
and gastric adenocarcinoma), and late (bladder urothe-
lial carcinoma, head and neck squamous cell carcinoma, 
renal papillary cell carcinoma, liver cancer, and gastric 
adenocarcinoma) stages (Fig. 3b and Additional file 4B).

ROC analyses were employed to determine the pre-
dictive performance (sensitivity and specificity) of sig-
natures 1 and 2 on 5-year OS. Signature 1 performed 
the best, as measured by area under the curve (AUC), 
in pancreatic adenocarcinoma (PAAD: AUC = 0.754) 
followed by renal papillary cell carcinoma (KIRP: 
AUC = 0.738), liver cancer (LIRI-JP: AUC = 0.652 and 
LIHC: AUC = 0.613), bladder urothelial carcinoma 
(BLCA: AUC = 0.645), uterine corpus endometrial car-
cinoma (UCEC: AUC = 0.635), and lung adenocarci-
noma (LUAD: AUC = 0.625) (Fig.  3c and Additional 
file  4C). Signature 2 performance in renal papillary cell 
carcinoma (KIRP: AUC = 0.810) was the best, followed 
by cervical squamous cell carcinoma and endocervi-
cal adenocarcinoma (CESC: AUC = 0.692), liver cancer 
(GSE14520: AUC = 0.675 and LIRI-JP: AUC = 0.625), 

pancreatic adenocarcinoma (PAAD: AUC = 0.668), renal 
clear cell carcinoma (KIRC: AUC = 0.665), head and neck 
squamous cell carcinoma (HNSC: AUC = 0.632), lung 
adenocarcinoma (LUAD: AUC = 0.623), gastric adeno-
carcinoma (STAD: AUC = 0.618), and bladder urothelial 
carcinoma (BLCA: AUC = 0.605) (Fig. 3d and Additional 
file  4D). Performance of both signatures 1 and 2 was 
superior to current tumor-node-metastasis (TNM) stag-
ing except for the following: signature 1 in liver cancer, 
lung adenocarcinoma, and uterine corpus endometrial 
carcinoma and signature 2 in bladder urothelial carci-
noma, renal clear cell carcinoma, liver cancer, and lung 
adenocarcinoma (Fig.  3c, d and Additional file  4C, D). 
Remarkably, when used in combination with TNM stag-
ing, both signatures consistently outperformed each of 
the individual classifiers, reinforcing their incremental 
prognostic values (Fig.  3c, d and Additional file  4C, D). 
Significantly, while TNM staging could not predict out-
come in cervical squamous cell carcinoma and endocer-
vical adenocarcinoma patients (CESC: AUC = 0.455), 
signature 2 sufficiently served as an adverse prognostic 
factor (CESC: AUC = 0.692) (Fig. 3d).

Univariate Cox regression analyses revealed that TNM 
stage was associated with patient survival in different 
cancer types except for cervical squamous cell carci-
noma and endocervical adenocarcinoma, and pancreatic 
adenocarcinoma (Additional file  3). This was expected 
given the low AUC values for TNM stage in both pancre-
atic adenocarcinoma (PAAD: AUC = 0.593) and cervical 
squamous cell carcinoma and endocervical adenocar-
cinoma (CESC: AUC = 0.455), suggesting that current 
TNM staging system for these cancers are inadequate 
(Fig.  3c, d). Multivariate Cox regression analyses after 
adjusting for TNM stage showed that signatures 1 and 
2 remained significantly associated with survival (Addi-
tional file  3). For 2 liver cancer cohorts, we considered 
additional clinicopathological features. The GSE14520 
cohort consisted of Chinese patients with hepatitis 
B-associated hepatocellular carcinoma [17], whereas 
LIRI-JP was a Japanese-based cohort of mixed etiol-
ogy [29]. Tumor size, cirrhosis, TNM stage, Barcelona 
Clinic Liver Cancer (BCLC) stage, and alpha-fetoprotein 

(See figure on previous page.)
Fig. 2 Kaplan–Meier analyses confirming that gene signatures were associated with patients’ overall survival. a Validation of signature 1 (green 
panels) across multiple cancer types. Kaplan–Meier plots of overall survival in cancer patients stratified based on signature 1 mean expression 
scores. Patients were median-dichotomized into high- and low-score groups. Signature 1 is a marker of good prognosis, and hence patients 
with high signature 1 scores had high survival rates. b Validation of signature 2 (red panels) across multiple cancer types. Kaplan–Meier plots of 
overall survival in cancer patients stratified based on signature 2 mean expression scores. Patients were median-dichotomized into high- and 
low-score groups. Signature 2 is a marker of adverse prognosis, and hence patients with high signature 2 scores had low survival rates. P values 
were calculated from the log-rank test. Pancreas #1 = PAAD cohort; Pancreas #2 = PACA-AU cohort; Pancreas #3 = PACA-CA cohort; Liver #1 = LIHC 
cohort; Liver #2 = LIRI-JP cohort; and Liver #3 = GSE14520 cohort (Additional file 1)
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Fig. 3 Tumor subgroup analyses and evaluation of prognosis predictive performance of gene signatures across different malignant grades. 
Kaplan–Meier plots show independence of a signature 1 (green panels) and b signature 2 (red panels) over the current TNM staging system in 
predicting prognosis in different cancer cohorts. Patients were sub-grouped according to TNM stages and further stratified using either signature 
1 or signature 2 scores. Both signatures successfully identified high-risk patients in different TNM stages. P values were calculated from the log-rank 
test. Analysis of specificity and sensitivity of c signature 1 (green panels) and d signature 2 (red panels) in predicting prognosis in different cancer 
cohorts using receiver operating characteristic (ROC) curves. Plots depict comparison of ROC curves of signature 1 or 2 and clinical TNM staging. 
Both signatures demonstrate incremental values over the current TNM staging system. AUC: area under the curve. TNM: tumor, node, metastasis 
staging. Liver #2 = LIRI-JP cohort and Liver #3 = GSE14520 cohort (Additional file 1). Representative plots are depicted in this figure. Additional plots 
are available in Additional file 4
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(AFP) levels were all significantly associated with survival 
in the GSE14520 cohort; tumor size could also predict 
survival in the LIRI-JP cohort (Additional file  3). When 
these significant covariates along with signatures 1 or 2 
were included in multivariate Cox models, the signatures 
remained significant risk factors: signature 1 (LIRI-JP: 
HR, 0.541; 95% CI 0.283–0.904; P = 0.043) and signature 
2 (LIRI-JP: HR, 4.539, 95% CI 2.055–10.029; P < 0.001 and 
GSE14520: HR, 2.012; 95% CI 1.267–3.195; P = 0.003) 
(Additional file 3). These results highlight the potentially 
superior prognostic ability of our signatures: signatures 1 
and 2 identified high- and low-risk patients in 8 and 12 
independent cohorts covering 10 cancer types (Fig. 1a).

Significance of somatic mutations in risk‑stratified patients
Patients were risk stratified into low- and high-risk 
groups using signatures 1 and 2. For signature 1, high-
risk patients had significantly lower expression levels 
of good prognosis genes ALKBH4, ALKBH7, KDM8, 
KDM6B, and P4HTM (Additional file  5A). In contrast, 
high-risk patients as stratified by signature 2 had signifi-
cantly higher expression levels of adverse prognosis genes 
ASPH, KDM3A, P4HA1, PLOD1, and PLOD2 (Additional 
file  5B). To ascertain the relationship between tumor 
hypoxia and expression of signature genes, hypoxia 
scores were computed for each patient as mean expres-
sion values  (log2) of 52 hypoxia signature genes [19]. 
Signature 1 expression scores in patients negatively corre-
lated with hypoxia score (Additional file 6A). Since tumor 
hypoxia is associated with distant metastasis, recurrence, 
and reduced therapeutic response [30], high expression 
of signature 1 genes (low hypoxia score) was correlated 
with less advanced disease states consistent with it being 
a marker of good prognosis (Additional file 6A).

Conversely, signature 2 scores positively correlated 
with tumor hypoxia and hence poor survival outcomes 
(Additional file  7A). We anticipated that patients’ indi-
vidual risks of death, as determined from signatures 1 
and 2, would positively correlate with tumor hypoxia. 
Indeed, the risk score for each patient, as calculated by 
taking the sum of Cox regression coefficient for each of 
the individual genes multiplied with its corresponding 
expression value [31], was correlated with the hypoxia 
score (Additional files 6B, 7B). Hence, high-risk patients 
had more hypoxic tumors, suggesting that our gene sig-
natures are efficient and adequate in predicting death.

To ascertain the association between patients’ risks, as 
determined by our gene signatures, and somatic muta-
tions, we retrieved the five most commonly mutated 
genes for each cancer. Mutations in PCDHA1, a cell 
adhesion gene from the cadherin superfamily, were asso-
ciated with short survival in bladder urothelial carci-
noma (BLCA: HR, 1.649; 95% CI 1.058–2.569; P = 0.027) 

and gastric adenocarcinoma (STAD: HR, 1.525; 95% CI 
1.007–2.307; P = 0.046) but with prolonged survival 
in uterine corpus endometrial carcinoma (UCEC: HR, 
0.516; 95% CI 0.272–0.978; P = 0.042) (Additional file 3). 
Mutations in another gene from the protocadherin alpha 
cluster, PCDHA2, were also associated with adverse out-
comes in gastric adenocarcinoma (STAD: HR, 1.604; 95% 
CI 1.061–2.427; P = 0.025) (Additional file 3). Mutations 
in TTN and the tumor suppressor TP53 were associ-
ated with short survival in bladder urothelial carcinoma 
(BLCA: HR, 1.610; 95% CI 1.091–2.376; P = 0.016) and 
uterine corpus endometrial carcinoma (UCEC: HR, 
1.780; 95% CI 1.025–3.090; P = 0.041) (Additional file 3). 
Interestingly, another tumor suppressor PTEN, when 
mutated, was linked to better outcomes in uterine cor-
pus endometrial carcinoma (UCEC: HR, 0.427; 95% 
CI 0.234–0.781; P = 0.006) (Additional file  3). Similar 
observations were made for a lipid kinase gene PIK3CA 
in uterine corpus endometrial carcinoma (UCEC: HR, 
0.362; 95% CI 0.190–0.689; P = 0.002) (Additional file 3). 
Likewise, MUC4 mutations prolonged survival in renal 
clear cell carcinoma patients (KIRC: HR, 0.570; 95% CI 
0.370–0.880; P = 0.012) (Additional file 3), an observation 
that is consistent with another study [32].

Multivariate Cox regression analyses on signatures 
1 and 2 while controlling for significant somatic muta-
tion variables revealed that the gene signatures were 
independent survival predictors for bladder urothelial 
carcinoma (signature 1: HR, 0.686; 95% CI 0.466–0.912; 
P = 0.047 and signature 2: HR, 1.411; 95% CI 1.062–
2.070; P = 0.048), renal clear cell carcinoma (signature 2: 
HR, 1.520; 95% CI 1.123–2.056; P = 0.007), gastric adeno-
carcinoma (signature 2: HR, 1.800; 95% CI 1.184–2.737; 
P = 0.006), and uterine corpus endometrial carcinoma 
(signature 1: HR, 0.519; 95% CI 0.293–0.920; P = 0.024) 
(Additional file 3). Signatures 1 or 2 and mutation status 
were collectively associated with OS (Fig. 4). In bladder 
urothelial carcinoma, high-risk patients (low signature 1 
score) harboring mutant alleles of PCDHA1 had ~ 50% 
increased mortality at 5  years compared to low-risk 
patients (high signature 1 score) with wild-type PCDHA1 
(P = 0.016; Fig.  4). Although results were less dramatic 
for PCDHA1 and signature 2, we still observed a ~ 25% 
elevated mortality at 5 years for these two patient groups 
with bladder urothelial carcinoma (P = 0.040; Fig.  4). In 
gastric adenocarcinoma, high-risk patients (high signa-
ture 2 scores) with mutant PCDHA1 had the worst out-
comes (P = 0.002; Fig. 4). Conversely, PCDHA1 mutation 
was associated with good prognosis in uterine corpus 
endometrial carcinoma, hence high-risk patients with 
wild-type PCDHA1 had the lowest survival rates while 
survival was prolonged by ~ 20% in low-risk patients with 
mutant PCDHA1 (P = 0.003; Fig.  4). PIK3CA (P < 0.001) 
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and PTEN mutations (P = 0.001) were associated with 
good outcomes in uterine corpus endometrial carcinoma 
(Fig.  4). Mutations in another cadherin gene PCDHA2 
when considered alongside signature 2 were also associ-
ated with survival in gastric adenocarcinoma (P < 0.001; 
Fig. 4). Survival rates were reduced by ~ 37% in high-risk 
patients with mutant PCDHA2 (Fig.  4). Joint relation 
between TP53 mutations and signature 1 significantly 
influenced survival in uterine corpus endometrial car-
cinoma (P = 0.002; Fig.  4). Since MUC4 mutations were 
associated with good outcomes, survival rates were the 
lowest in high-risk patients (high signature 2 scores) with 
wild-type MUC4 (P = 0.003; Fig. 4).

Tumor suppressive roles of KDM8 through cell cycle 
regulation and cell adhesion maintenance
Of all the signature genes, KDM8 was identified as one 
of the most down-regulated genes in tumors (Fig.  5a). 
Patients with high KDM8 levels had a significantly lower 
risk of death in pancreatic and liver cancer cohorts 
(Fig.  5e). Prognostic significance of KDM8 was also 
independent of tumor stage (Fig. 5e). KDM8 expression 
decreased as tumor malignant grade increased in that 
stage 1 tumors had the highest median KDM8 values 
(Fig.  5b). Moreover, KDM8 expression was negatively 
correlated with hypoxia score, indicating that patients 
with low levels of KDM8 had more hypoxic tumors and 
poorer survival outcomes (Fig. 5c). Together, these obser-
vations suggest that KDM8 may function as a tumor 
suppressor. This hypothesis is corroborated by an inde-
pendent report on the role of KDM8 in cell cycle regula-
tion [33]. Indeed, we observed that KDM8 expression was 
negatively correlated with the expression levels of canon-
ical cell cycle genes: cyclins (CCNA2, CCNB1, CCNB2, 

CCND1, CCNE1, and CCNE2) and cyclin-dependent 
kinases (CDK1, CDK2, CDK4, CDK6, CDK7, and CDK8), 
which were consistent across all liver and pancreatic can-
cer cohorts (Fig. 5d). This implied that KDM8 is required 
for tight control of the cell cycle machinery and its reduc-
tion may lead to aberrant proliferation commonly seen in 
cancer cells.

To ascertain the biological consequences of deregulated 
KDM8 expression, we conducted differential expres-
sion analysis on liver cancer patients categorized into 
KDM8-low and -high groups. A total of 745 genes were 
differentially expressed (DEGs) between the two groups 
(fold change > 2 or < − 2, P < 0.05) (Additional file 8). Sig-
nificant enrichments of biological pathways involved 
in metabolism, immune regulation, VEGF production, 
inflammation, and cell adhesion were observed (Fig.  5f 
and Additional file 9). Furthermore, DEGs were overex-
pressed as targets of HNF4A, HNF4G, FOXA1, FOXA2, 
and NR2F2 transcription factors (TFs) (Fig.  5g). These 
TFs play central roles in cell polarity maintenance and 
epithelial differentiation [26, 34, 35], hence down-regula-
tion of KDM8 may drive epithelial–mesenchymal transi-
tion (EMT) and tumor progression. HNF4A is a key TF 
responsible for regulating a myriad of hepatic functions 
including cell junction assembly [26, 36]. Pathway anal-
ysis of KDM8 DEGs revealed enrichment of processes 
related to cell adhesion, suggesting potential crosstalk 
between KDM8 and HNF4A. Of the 745 DEGs, analysis 
on a hepatoma-based HNF4A chromatin immunoprecip-
itation-sequencing dataset demonstrated that 148 genes 
were directly bound by HNF4A [37]. To further reinforce 
the interplay between HNF4A and KDM8, we observed 
that 110 of the 745 DEGs were overrepresented in 
HNF4A-null mice [26] and 45 of these genes were direct 

Fig. 5 Putative tumor suppressive functions of KDM8 occur through processes related to cell cycle regulation and cell adhesion. a Expression 
of KDM8 was significantly lower in tumor (T) samples than in non-tumor (NT) samples in liver and pancreatic cancer cohorts. Mann–Whitney–
Wilcoxon tests were used to compare T and NT samples. Asterisks represent significant P values: *** < 0.0001. b Expression levels of KDM8 decreased 
with disease progression and malignant grade in liver and pancreatic cancer cohorts. c Significant negative correlation between patients’ KDM8 
expression and tumor hypoxia (hypoxia score) in liver and pancreatic cancer cohorts. d Correlation between KDM8 expression and canonical cell 
cycle regulators in patients with liver or pancreatic cancers. A majority of genes involved in cell-cycle regulation are negatively correlated with KDM8 
expression. Liver #1 = LIHC cohort; Liver #2 = LIRI-JP cohort; and Liver #3 = GSE14520 cohort (Additional file 1). e Kaplan–Meier analysis of patients 
stratified by KDM8 expression. Patients were median-dichotomized into low- and high-expression groups. Patients with low KDM8 expression 
had significantly shorter overall survival. This was consistent in patients analyzed as a full cohort or sub-categorized according to TNM stage. Liver 
#1 = LIHC cohort; Liver #2 = LIRI-JP cohort; and Liver #3 = GSE14520 cohort (Additional file 1). f Patients were median-stratified according to KDM8 
expression. Differential expression analysis between KDM8-high- and -low groups in liver cancer cohorts revealed 745 differentially expressed 
genes (DEGs; fold-change > 2 or < − 2). Enrichment of biological pathways associated with DEGs, which include processes related to cell adhesion, 
inflammation, metabolism, and signal transduction pathways in cancer. g Enrichment of transcription factors (TFs) from the ENCODE database that 
are potential regulators of KDM8 DEGs. These TFs were predicted to bind near KDM8 DEGs. h Venn diagram depicts the overlap between HNF4A 
targets (as identified by ENCODE chromatin-immunoprecipitation sequencing dataset) and genes affected by HNF4A loss-of-function (as identified 
in HNF4A-null mice). Of the 745 DEGs, 148 were identified as direct HNF4A targets, and 110 genes were affected by HNF4A loss-of-function. In 
the Venn intersection, 45 genes were both HNF4A targets and altered in HNF4A-null mice. i Scatter plot depicts expression patterns of 110 genes 
affected by HNF4A loss-of-function. Gene names of the 45 HNF4A targets are annotated on the plot. A majority of KDM8-associated genes were 
down-regulated in the HNF4A-null mice

(See figure on next page.)
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HNF4A targets (Fig. 5h). Differential expression analysis 
between HNF4A-deficient and wild-type mice showed 
that a majority of the 45 genes were down-regulated, as 
expected, suggesting that HNF4A directly activates their 
gene expression, many of which are involved in a multi-
tude of cell adhesion processes (Fig. 5i).

Discussion
The present multi-cohort retrospective study identi-
fied two novel pan-cancer prognostic gene signatures 
derived from oxygen-sensing genes. Cross-platform 
validations confirmed prognosis in 10 cancer types to 
collectively include 6761 patients spanning 20 diverse 
cohorts (Fig. 1a). The gene signatures had opposing prog-
nostic values: signature 1 is a marker of good prognosis, 
whereas signature 2 is associated with poor outcomes. 
The key strengths of our signatures as powerful prognos-
tic tools are (1) pan-cancer utility, (2) involvement of a 
mere 5 genes each that provide continuous assessment of 
death risks, and (3) superiority over current TNM stag-
ing. Our results suggest that dysregulated oxygen sens-
ing in diverse cancer types may activate other oncogenic 
pathways such as the loss of cell polarity and cell cycle 
regulation, which collectively influenced clinical out-
comes in patients.

Anti-tumorigenic functions have been reported for 
several genes from signature 1. Loss of KDM6B resulted 
in more aggressive pancreatic ductal adenocarcinoma 
[38]. In colorectal cancer, high KDM6B expression pre-
dicted good prognosis, and knock-down of KDM6B was 
associated with augmented cell proliferation and inhib-
ited apoptosis [39]. Yet, KDM6B function is enigmatic. 
Others have reported that high KDM6B expression is 
associated with increased metastasis and invasion of 
renal clear cell carcinoma [40]. KDM6B also promotes 
TGF-β-induced EMT and invasiveness in breast cancer 
[41]. While we could neither confirm nor deny the valid-
ity of these studies, it is striking that our observation of 
favorable prognosis associated with high KDM6B expres-
sion in pancreatic ductal adenocarcinoma was consist-
ent with the report from Yamamoto et al. [38]. We also 
did not observe any prognostic significance of signature 
1, which includes KDM6B, in either breast or renal clear 
cell cancer, which indirectly substantiates findings from 
two other reports on KDM6B not being a marker of good 
prognosis [40, 41]. Several other gene signatures have 
been reported for gastrointestinal cancers [42–46]. Inter-
estingly, there is no overlap between our signature genes 
and those identified in these studies. This is perhaps not 
surprising since our signatures were identified based on 

prognostic information in pancreatic cancer, whereas 
those studies employed very different approaches for 
gene signature discovery.

KDM8 is a gene associated with favorable prognosis. 
Our results suggest determinative crosstalk between 
KDM8 and HNF4A, particularly in the context of mor-
phogenesis, cell adhesion, maintenance of cell polar-
ity, and epithelial formation. Moreover, 5-year survival 
rates dropped to ~ 12% in bladder cancer patients with 
low expression of signature 1 genes (high-risk), which 
included KDM8 and PCDHA1 mutations. Additive 
effects conferred by mutations in this cell-adhesion 
protein supports the hypothesis that KDM8 is likely a 
tumor suppressor and down-regulation of this gene may 
lead to a loss of epithelial phenotype and cell adhesion 
to promote cancer invasion. Additionally, loss of KDM8 
expression is correlated with increased expression of 
cell cycle genes that may contribute to deranged cell 
cycle regulation and tumor progression (Fig.  5d). Like 
KDM6B, the function of KDM8 appears to be cell type-
dependent. While KDM8 expression is down-regulated 
in liver and pancreatic tumor samples compared to adja-
cent non-tumor samples (Fig. 5a), it is overexpressed in 
breast cancer to induce EMT and invasion [47]. None-
theless, KDM8 roles are not limited to cell cycle regu-
lation. KDM8 exerts tumor suppressive functions in 
hematopoietic cancer by mediating DNA repair [48]. 
Collectively, imbalance in the Jumonji-C subfamily of 
lysine demethylases such as KDM8 and KDM6B is likely 
to result in broad-ranging but cell type-specific biologi-
cal effects.

Conclusions
Overall, our gene signatures would enhance decision 
making in clinic by stratifying patients according to 
their tumor biology. This may maximize treatment effi-
cacy and prolong lifespan by directing resources to those 
most in need. This technology may be incorporated into 
existing diagnostic pathways to achieve a more individu-
alized standard of care by revealing molecular changes 
that allow further discrimination of otherwise simi-
larly staged tumors. As each signature only consists of 
5 genes, we anticipate that they can be implemented 
immediately, even in modestly sized centers that are 
using PCR-based technology. Consequently, therapeu-
tic options can be allocated more decisively based upon 
this additional personalized information to ensure that 
patients with the most aggressive cancers get the most 
robust treatments.
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Additional file 2. List of 61 2OG-dependent oxygenases.

Additional file 3. Univariate and multivariate Cox proportional hazards 
analysis of risk factors associated with overall survival in multiple cancers. 
Univariate values of TNM stage were in accordance with our previous 
report utilizing TCGA datasets [4].

Additional file 4. Additional tumor subgroup analyses and evaluation 
of prognosis predictive performance of gene signatures across differ-
ent malignant grades. Kaplan–Meier plots show independence of (A) 
signature 1 (green panels) and (B) signature 2 (red panels) over current 
TNM staging system in predicting prognosis in different cancer cohorts. 
Patients were sub-grouped according to TNM stages and further stratified 
using either signature 1 or signature 2 scores. Both signatures successfully 
identified high-risk patients in different TNM stages. P values were calcu-
lated from the log-rank test. Analysis of specificity and sensitivity of (C) 
signature 1 (green panels) and (D) signature 2 (red panels) in predicting 
prognosis in different cancer cohorts using receiver operating character-
istic (ROC) curves. Plots depict comparison of ROC curves of signature 1 
or 2 and clinical TNM staging. Both signatures demonstrated incremental 
values over current TNM staging system. AUC: area under the curve. TNM: 
tumor, node, metastasis staging. Liver #1 = LIHC cohort; Liver #2 = LIRI-JP 
cohort and Liver #3 = GSE14520 cohort (Additional file 1).

Additional file 5. Distribution of expression of signature genes in low- 
and high-risk patients. (A) signature 1 (green panels) and (B) signature 
2 (red panels). Patients were median-stratified into low- and high-risk 
groups based on mean expression scores of signature genes. Box plots 
depict expression distribution of each of the 5 genes in both signatures 
in these two patient groups. (A) Since signature 1 is a marker of good 
prognosis, high-risk patients show significantly lower expression of 
individual signature genes. (B) In contrast, signature 2 is a marker of poor 
prognosis, hence high-risk patients show significantly higher expression of 
individual signature genes. Nonparametric Mann–Whitney–Wilcoxon tests 
were used to compare low- and high-risk patients. Asterisks represent 
significant P values: * < 0.01, ** < 0.001 and *** < 0.0001. LR = low risk. 
HR = high risk.

Additional file 6. Correlation of patients’ risk scores derived from signa-
ture 1 with tumor hypoxia. (A) Significant negative correlation between 
signature 1 expression scores and tumor hypoxia. (B) Significant positive 
correlation between signature 1 risk scores and tumor hypoxia. Calcula-
tions of expression scores, risk scores, and hypoxia scores are explained in 
the methods. Liver #1 = LIHC cohort and Liver #2 = LIRI-JP cohort.

Additional file 7. Correlation of patients’ risk scores derived from signa-
ture 2 with tumor hypoxia. (A) Significant positive correlation between 
signature 2 expression scores and tumor hypoxia. (B) Significant positive 
correlation between signature 2 risk scores and tumor hypoxia. Calcula-
tions of expression scores, risk scores and hypoxia scores are explained in 
the methods. Liver #2 = LIRI-JP cohort and Liver #3 = GSE14520 cohort.

Additional file 8. Differentially expressed genes between KDM8-high and 
-low groups in the liver cancer cohort (LIHC).

Additional file 9. Significantly enriched biological pathways of differen-
tially expressed genes.
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